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CHAPTER I.

Introductory remarks.
e begin by recalling some of the fundamental notions and 
theorems in the theory of the almost periodic functions 

of a real as well as of a complex variable. We wish, however, 
essentially to confine ourselves to what is indispensable in the 
following1.

1 In its main features, the theory of the almost periodic functions was 
developed by the author in three papers in Acta Mathematica (vol. 45, 46, 47) 
under the common title “Zur Theorie der fastperiodischen Funktionen”. Especi
ally the last of these articles dealing with the functions of a complex variable 
is of importance for the present paper. Furthermore, we shall also make use of 
some of Bochner’s results given in his important paper (Beiträge zur Theorie 
der fastperiodischen Funktionen, I. Teil, Math. Ann. vol. 96). However, it is not 
supposed that the papers are known to the reader and, therefore, the theorems 
applied will be directly formulated. For further information, cf. one of the 
monographs, A. S. Besicovitch: Almost periodic functions, Cambridge 1932; 
J.Favard: Leçons sur les fonctions presque-périodiques, Paris 1933; H.Bohr: 
Fastperiodische Funktionen, Berlin 1932.

A (complex) function F(/) of a real variable /, continuous in 
— dc</ <oc, is called almost periodic, if to any given f>0 there 
exists a relatively dense set of translation numbers v = v (e) , 
i. e. of numbers r which satisfy the inequality

I F(t + t) — F(t) \ < e in — Oo < Z< CX>.

Here, a set of real numbers is called relatively dense, if there 
exists a length L such that any interval of length L contains at 
least one number of the set.

An almost periodic function F(t) is bounded and uniformly 
continuous in —Oo<i<oo, and the sum (and product) of two 
almost periodic functions proves again to be almost periodic.

1
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For an arbitrary fixed real t, let us consider the quantity 

p(t) = u. b. I F(/ + t) —F(i) | .
— oc < t < SO

This quantity, by the author originally denoted as the minimum 
error (corresponding to the given 7) of the function, was studied 
in detail by Bochner as a function of r and, now, the function 
p (7),— oo<r<oo, is usually called the translation function of 
the given function F(t). The function n (r) is again an almost 
periodic function and its own translation function. A set (F(0) 
of almost periodic functions can be “majorised”, if there exists an 
almost periodic function F0(f), which is denoted a majorant of 
the set (F(0)> with the property that the translation function 
n (r) = (r) of any given function F(t) of the set satisfies for
all t the inequality

n (r) < Po (7 ) ,

where p0 (t) denotes the translation function of F0(t). A neces
sary and sufficient condition that the set of almost periodic func
tions (F(0) can be majorised is that the functions of the set 
are “uniformly” uniformly continuous and uniformly almost 
periodic. Here, a set of almost periodic functions is said to be 
uniformly almost periodic, if to any e> 0 there exists a rela
tively dense set of numbers t which are translation numbers 
corresponding lo s for any function of the set. A finite set of 
almost periodic functions can always be majorised. From this 
it becomes obvious that the sum of a finite number of almost 
periodic functions is again almost periodic.

A principal theorem in the theory of almost periodic func
tions of a real variable states that the class of all almost peri
odic functions is identical with the class of functions which, 
uniformly for all t, can be approximated by finite sums of the

N
form where the coefficients an are complex numbers,

1
while the exponents Zn are real numbers. With any almost 
periodic function F(f) there is associated a Fourier series

F(/) ^AnelÄnt,

where the exponents y/n form the countably infinite set of values 
of Z for which the mean value
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a(Â) = A/ ( F(¿) e~lÀZ) = Hm ~ Cf(0 e~~ÎÀ'dZ
T» OO 2 J t)—T

differs from zero, while the coefficients An are the corresponding 
values of a(.7n). Starting from the Fourier series of an almost 
periodic function, by suitable summation methods finite sums 

of the form V e1 /1,i f can be deduced (all exponents of which 
i

are Fourier exponents of F(f)) which converge uniformly to F(t).
If F(t) is almost periodic with the Fourier series Z ‘̂, 

and p is an arbitrary positive number, the (possibly empty) 
series ^'^nel/^nt consisting of just the terms Anel^nt in the 

. , 2 7T .
original series with integral multipla ol as exponents, is the 

Fourier series of a continuous, purely periodic function P(t). 
This function P(0, which was especially considered by Bochner, 
will be denoted as the “periodic component of F(/) belonging 
to the period p". This component can also be determined from 
the sequence of almost periodic functions

_ F (/ + p) + F (f + 2 p) + • • • + F (i + zip)
" W “ n

as this sequence Fn(t) converges for n-> oo to P(t), uniformly 
in the whole interval —oo<i<oc. From the limit equation 
P(t) — lim F (i) it results immediately that

u. b. |P(/)| < u.b. I F(/)|.
— oo < t < oo — oo < t < oo

Let us now briefly recall some notions and theorems con
cerning the almost periodic functions of a complex variable.

A function /(s) — f(o+ it), analytic in a vertical strip 
a<a<ß (—oo < a<ß < oc), is called almost periodic in («, ß), 
if to any ¿> 0 there exists a relatively dense set of translation 
numbers t — t (e) satisfying the inequality

I f(s + ir) — f(s) I < e in the strip «<#</?.

In other words, we require that for any fixed o' in the interval 
a<cf<ß the function Fo(t) = f(<ï+ it) is an almost periodic



6 Nr. 18

function of the real variable t, and that the functions of the 
set corresponding to cc<(j<ß are uniformly almost
periodic. But, generally, this set cannot be majorised, since the 
functions (on account of the behaviour near the boundary of 
the strip) need not be “uniformly” uniformly continuous func
tions of I.

A function /'(.s'), analytic in <«■</?(—■ oo < «. < ß < oo), is 
called almost periodic in [«, /?], if it is almost periodic in every 
substrip (rq, ßß) where « < ¿q </ÎL </i. We also use mixed 
brackets and thus speak of a function almost periodic in [ct, /?). 

With each function f(s), almost periodic in [a, , is associ
ated a Dirichlet series

/•(») ~

with real exponents which, for any fixed in a <tf<ß, 
gives the Fourier series of the almost periodic function Fa(J) — 
f(aß-it) of the real variable f. The set of all functions, al
most periodic in [«,/?], is identical with the set of the func
tions which can be approximated uniformly in [a, /z?j (i. c. uni
formly in every substrip o1<o'</?1) by finite sums of the form 

where the are real numbers. If f\ (s) and f2(s) are 
two analytic functions which both are almost periodic in [«, /?], 
their sum A(s)+A(s) is again almost periodic in [a, /?]. A cor
responding general theorem does not hold for functions almost 
periodic in (a, ß). Thus, the functions e and e are both al
most periodic (even purely periodic) in (—oo, oo), whereas their 
sum /(.s) is almost periodic in (—oc, oo], but not in (—oo, oo); 
for any real r z# 0 it is even valid that | f(s + it)— /’(s) | ~> oo for 

oo, uniformly in /. Another simple example is given by the 
two geometrical series 

n = 0

cc

which both are almost periodic (even purely periodic) in (—oc, 0), 
while their sum is almost periodic in (—oo, 0], but not in (—oo, 0); 
for, as the function f(s) = fi(s) + f2(s) has poles in (and only in) 
all points of the two arithmetic progressions 2/îjttz and |/2 znzzrz, 
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there does not exist any number r i 0 for which the difference 
/(s + zr)— /(s) is bounded in the whole half plane —Oo<o'<0 
(as the set of poles is not transformed into itself by any trans
lation) so that /‘(s) for no e has other translation numbers in 
(—Oo,0) than the trivial t = 0.

It is the aim of this paper to investigate the behaviour of a 
function f(s), almost periodic in a strip (ft, yd) (and not only in 
[ft, yd]), in the immediate neighbourhood of one of the boundaries 
of the strip, for instance the right one. We shall assume the 
strip cut off (if necessary) on the left in order to avoid any dif
ficulties on the left boundary of the strip.

For our purpose it will be convenient also to introduce the 
notion of a function almost periodic in {a,ß} (and correspond
ingly in {«, yd) etc.). For — oo<«<yd<oo, the function f(s) is 
called almost periodic in {«, yd}, if /’(s) is continuous in the 
closed strip « < o' < yd and analytic and almost periodic in the 
open strip («, yd). Besides, it is clear that every translation number 
r = t(í) corresponding to f(s) in the open strip (ft, yd) as a 
matter of course is a translation number r (c) for /(.s) in the 
closed strip {ft,/?), as the inequality

|/“(« +zr) —/(s) | < e in a<(i<ß,

on account of the continuity of f(s) in « < o' < yd, involves the 
inequality

I / (s + zr) — / (.s) I < t in « < o' < ,d.

Bv simple conclusions (known from the theory of the almost 
periodic functions of a real variable) we realize immediately 
that a function almost periodic in {ft, yd} is bounded and uni
formly continuous in « < a < ß. Thus, if /"(s) is almost peri
odic in {ft, yd}, the functions Fa(t) — (a < <j < ß) are
not only uniformly almost periodic, but also “uniformly”
uniformly continuous, i. e. the set {F(í(¿)) (ft < o'< yd) can 
be majorised. From this, it readily results that the sum of
two functions and f2(s), both almost periodic in {a,ß}, 
again is almost periodic in { «, ß}. We add, without going into 
details, that it is easy to prove that, if /¡ (s) is almost periodic 
in {ce, yd} and /2 (.s) is almost periodic in {«,/?), the sum 
/i(s) + /2(s) is almost periodic in {ft, yd) and not only in { ft, yd].
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But it is important to call attention to the fact that the sum of 
two functions, almost periodic in {«, /?), generally is almost 
periodic only in {«,/?], but not in {«,/?); thus, the two func

tions mentioned above, -- and , are both almost peri-
I — e 1 — e^s

odie, for instance in (—1,0), whereas the sum is not.
In the present paper, we shall stud}7 the functions, almost 

periodic in a strip of the type («,/?), especially the un
bounded functions of this type.

Of special importance for our investigation of a function 
almost periodic in ß) is the set F of all translation numbers
1 (where no e is prescribed), i. e. the set of all real numbers r 
for which the difference /‘(s + ir)— f(s) is bounded in a < a<ß. 
While, for a function almost periodic in {«,/?}, this set F con
sists of all real numbers, this is not necessarily the case for a 

function almost periodic in /3); thus for the function - s,
1 — e 

purely periodic in {—1, 0), the set F consists of the numbers
2 mn. It will be shown below that the set F consists of all real 
numbers only in the trivial case, where the function /'(.$) itself 
is bounded in {«, ß}. Let us call the function

z?(r) = u. b. I /■(« + iv) — /'(s) |, 
s in ( a, ß )

which is delined in the set F, the translation function of /(.s) 
in {a, $). The set F contains together with t also —r, and we 
have z;(—r) = p(t); moreover F contains together with and 
z2 also T1 + r2’ anc^ the inequality p(t1 + t2) < v (tj) + o (t2) is 
valid. The set F is a module, as it contains together with ty 
and r2 also — t2 and it contains other numbers than 0 (as a 
subset it contains for instance the relatively dense set of all 
numbers r = r(l)); we shall denote F the “translation module’’ 
of the function /’(<?) in {«./»).

Moreover, the process mentioned above of separating the 
periodic component with a given period from an almost periodic 
function can be transferred from functions of a real variable to 
functions of a complex variable. For a function f(s), almost 
periodic in {«,/?), and an arbitrarily chosen />>(), we lind that 
the sequence of the functions (evidently almost periodic in Wl)
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r / A /O + ip) + /'(^ + 2 ip) + • - + /'(*  + nip)
,n<S} n

converges for oc in the whole strip {a, ß) and even uni
formly in each substrip {«,/}, where «</</?, to a function 
p (.s) purely periodic with the period ip in (ce, ß) whose Dirichlet 

271

series (Laurent series) e”' p s consists just of those terms 
Ane^nS in the Dirichlet series of the given function f(s) the ex- 

k) Ft
ponents sln of which are integral multipla of ---- . The transi
tion from the real to the complex case is immediate, if we only 
observe that uniform convergence of the sequence fn(s) on the 
two lines o' = a and o' = / involves that fn(s) converges 
uniformly in the whole strip a < o' < /, as, according to the 
theorem of Phragmen-Lindelöf, u. b. |/ni(s) — /„2(s)| remains 
unchanged, whether s varies in the whole strip a < o' < y or only 
on the two boundaries a = a and o = / of the strip. Further
more, if f(s) is bounded in {a,ß), the component p (s) is also 
bounded, and the inequality

u. b. I p (s) I < u. b. I /'(.s) I
s in ( a, ¡3) s in {c, (?)

is valid.

After this introducing Chapter I, the present paper is divided 
in three Chapters.

In Chapter II, the case ß = oo, i. e. the functions almost 
periodic in {a, oo), is treated. If the function /(s) is bounded in 
(«, oo), its behaviour for o"-^ oo is extremely simple in con
sequence of well-known theorems on almost periodic analytic 
functions. But also for unbounded functions, almost periodic in 
{«, oo), the situation is very perspicuous in view of the fact 
that the translation module F here always proves to be discrete, 
i. e. forms an arithmetic progression; in fact, a general “splitting 
theorem” holds which states that every such function /“(.$•) can 
be written (and essentially only in one way) as a sum of a 
function p(s), unbounded and periodic in {a, oo), and a func- 
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lion ¿>(s), bounded and almost periodic in {a, oo). Moreover, 
also the converse is valid, viz. that the sum of a function p (s), 
unbounded and periodic in {a, Oo), and a function b (.$), bounded 
and almost periodic in {a, oo ), is always almost periodic in 
(«, oc).

Chapter III deals with the case, where is finite; here, we 
may suppose that ß = 0 so that we have to do with functions 
which are almost periodic in a strip {«, 0). 'The functions which 
are bounded and almost periodic in («, 0) are only shortly 
discussed, as the main object is the study of the functions 
unbounded in (a, 0). For such an unbounded function, we 
begin proving that its translation module F cannot contain 
all real numbers. Subsequently, we distinguish between the 
case where the set F is discrete and that where F is everywhere 
dense, '¡'lie first case, where F is an arithmetic progression, 
does not cause any difficulties; a general splitting theorem is 
valid here (completely analogous to that holding in the case of 
ß = oo), as /($) can be splitted—and practically uniquely—into 
a function p (s) purely periodic in («, 0) and a function b (s) 
bounded and almost periodic in (w, 0). Next, the other (essenti
ally more difficult) case is considered, where the translation 
module F is everywhere dense; in this case, the line <t = 0 
is always an essentially singular line for the analytic function 
f(s). fhe main question is, whether also here a general splitting 
theorem holds, analogous to that valid in the other cases. It is 
proved that this is not the case. In a decisive way we use a 
“gap theorem’’ concerning Dirichlet series y; aneA,,s, convergent 
for tf<0, where the exponents form an increasing sequence of 
positive numbers which increase “very strongly” to the infinite; 
this theorem slates that the function /’(s) represented by such a 
series always is almost periodic in the whole strip (— oc, 0), 
and not only in (— oc, 0].

Finally, in Chapter IV, the proof of this gap theorem is 
given. Here, the treatment of Dirichlet series with strongly 
increasing exponents is extended somewhat further than neces
sary for the proper purpose of this paper. Thus, in order to 
throw light on the nature of the methods used, a new proof 
of a special case of the so-called Hadamard gap theorem for 
Dirichlet series ^7 a„eÁ"'s with the convergence half plane o'< 0 
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is given which stales that the convergence line o' = 0 always is 
an essentially singular line for the analytic function represented 
by the series, if the exponents increase rapidly enough. In the 
case where the Z are integers (and we are concerned with a 
power series) this simple proof has already been communicated 
by the author in a paper1 written in Danish.

1 Om den Hadamard’ske “Hulsætning”, Matematisk Tidsskrift, B (1919). 
See also the paper: Om Potensrækker med Huller, Matematisk Tidsskrift, 
B (1942).



CHAPTER IL

Functions almost periodic in a strip («, oc).
We shall now investigate, how an analytic fonction /'(.s) which 

is almost periodic in {a, oo) behaves for a-> oc.
We begin by recalling the following theorem which was 

proved in the third paper in Acta Mathematica cited above. If 
/(s) is almost periodic in {a, oc], a necessary and sufficient 
condition that /(s) is bounded for oc, i.e. bounded in {«, oc), 
is that all the Dirichlet exponents yi n of the function are < 0; 
if this condition is satisfied, the function is almost periodic not 
only in {«, oc ] , but also in {«, oc), and for o'-*  oc uniformly 
in t it approaches a definite limit (viz. the constant term in the 
Dirichlet development of the function); in this case the func
tion is called regular in the point c = oc. In view of a later 
application, we observe that the difference between two func
tions, bounded and almost periodic in { a, oc ), again is almost 
periodic in (a, oc), and not only in {«, Oc].

Thus, the functions almost periodic in a strip («, oc), which 
are bounded for o'-*  oc, are simply the almost periodic functions 
regular in o' = oc; an investigation is therefore only demanded 
in the case, where the function f (s'), almost periodic in {a, oc), 
is unbounded for oc (and, therefore, among its Dirichlet 
exponents has positive ones).

As the most simple type of such a function, we have ob
viously a function unbounded and purely periodic in («, oc).

Let us begin by proving the following theorem: If p (s) and 
b (s) are two functions, almost periodic in {a, oc), of 
which p (s) is purely periodic, while b (,s) is bounded in 
(a, oc), their su in
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f(s) = P (s) + b (s)

is again almost periodic in {«, oo).
The theorem is not quite trivial, as it is not valid that the 

sum of any two functions almost periodic in (a, oo) is again 
almost periodic in {a, oo ) (but only in {a, oo]); however, it 
is easy enough to prove. It is the task to show that to any 
arbitrarily given e > 0 a relatively dense set of real numbers t 
exists for which

I/(s + it) —/(s) I < e in the whole strip a < o' < oo.

As b (s) tends to a limit for o'-> oo (uniformly in f), to the 
given e we can first determine a number / = /(e) so that any 
real number r is a translation number r(e) for the function b(s) 
in the half plane {/, oo); from this, it follows that the function 
b (s) has quite the same translation numbers r(e), whether we 
consider it in the half plane {a, oo) or in the strip {a,/}. In 
consequence of the earlier cited majorising property of the almost 
periodic functions /?(o+z7) (ß<a</) the set of translation 
numbers t (e) of b (s) in («, /} has, however, a relatively dense 
intersection with any arithmetic progression—because, as is well- 
known, this is the case for the translation numbers of a single 
almost periodic function of a real variable. If, as difference in 
this arithmetic progression just p > 0 is chosen, where ip is a 
period of the given periodic function p(s), any number t in the 
previously mentioned relatively dense intersection is a translation 
number of the sum f(s) = p (.s) + b (s) in {a, oo), as

p (s + zr) = p (s) and | b (s + zz) — b (s) | < e in a < tf< Oo.

As we shall see, we have thereby actually exhausted all 
possibilities for a function almost periodic and unbounded in 
{a, oo), since the following inverse theorem is valid.

Splitting1 theorem: Every function f(s) unbounded and almost 
periodic in {«, oo) can—and essentially only in one may—be written 
as a sum

f(s) = p (s) + b (s),

where p (s) is periodic and unbounded in (a, oo), while b(s) is 
bounded and almost periodic in {a, oc).
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II’ we have a splitting of /’(.s) as that stated in the theorem, 
and if ip is a period of the periodic term p (s), the number p 
must necessarily belong to the translation module F of the func
tion /'(.s') in {«, oc), as in a <(><. cc the inequality

I f(s+ip) — f(s) I < 2B

holds, where B means u. b. | b (s) | in a < o<ûc. It is, there
fore, natural—and may also be interesting in itself—to study 
primarily this translation module F, i. e. to try to determine the 
numbers r for which the difference /(s + zr)— /'(.s) is bounded 
in {a, oo). Since the Dirichlet development of this difference 
is determined as the difference between the Dirichlet develop
ments of /'(s + zr) and f (s), i. e. given by

/■ (.S' + z t) — /■ (s) æ y An (ei71 "1 — 1 ) eA" s,

the theorem quoted in the beginning of this Chapter, however, 
involves immediately the following necessary and sufficient con
dition for the (anyhow in («, oc]) almost periodic function 
/'(.s + zz) —/'(.s') to be bounded in («, oo): In the Dirichlet series 
mentioned above must not occur any term with a positive ex
ponent, i. e. for any positive Dirichlet exponent of the given 
function /'(s) (necessarily occurring, because /'(.s') is unbounded 
in {a, oc)) it must be valid that elA"1—1 = 0, i. e.

y!nT = 0 (mod 2 ;t) for any ^/n>0.

Thus, the numbers r in the translation module F of /(s) are 
*2 TC 

just the numbers t which are multipla of all the numbers

where sin runs through the positive Dirichlet exponents of f(s). 
Hereby (only applying that any r has to be an integral multiple 

of one of these numbers ) the translation module appears
Ho

to be discrete, i. e. consists of all the numbers of an arithmetic 
progression rz/(</>(), v = 0,± 1, • • •). After this, turning to the 
exponents yi n, we notice (as t = q satisfies all the congruences 
above) that all positive exponents must be multipla of the 

2 yr
number — and, further (as t = q is the smallest positive solution
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2 TC of the congruences) that is the greatest common divisor of 

<7 
the positive exponents yi .

It is now easy to accomplish the proof of the splitting 
theorem, since it can he demonstrated that, as a period of 
the periodic term in a splitting of the desired kind, we may 
even use the number of least absolute value which may be 
taken into consideration, viz. the number iq, where q is the 
smallest positive number in the translation module F. As p (s) 
we may use the periodic component (which was introduced in 
Chapter I) of /’(s) in {a, oo) belonging to the period iq. For, 
as the Dirichlet development of this function p (s), purely peri
odic in {«, oo), consists of the terms Anel/l"s in the Dirichlet 
development of /(s), for which is a multiple of — , the Dirichlet n g
development of p (s) coïncides as regards the terms with positive 
exponents (even with exponents > 0) with the Dirichlet develop
ment of f(s). Therefore, the Dirichlet development of the diffe
rence b (s) = f(s)—p (s), almost periodic in {«, qo], can only 
contain terms with negative exponents; it follows that the func
tion b (s) actually is a function, bounded and almost periodic 
in { a, oo ).

From the proof of the splitting theorem given above it is 
furthermore easy to decide to what degree the splitting is unique. 
Let us assume that

/(s) = p (s) + b (s)

is the “standard splitting’’ stated in the above proof, the period 
of p (s) being the number iq where q is the smallest positive 
number in the translation module F, and p (s) just being the 
periodic component of f(s) belonging to that period iq-, more
over, let us assume that

/’(s) = p*(s)  + b*(s)

is another arbitrary splitting of f (s) in {cc, oc ) of the kind 
stated in the theorem. As for the period ip of the periodic 
term p* (s) it holds that p is a number of the translation mo
dule F, i. e- a number of the form vq, the difference n(s) = 
p*  (s') — p (s) = b (s) — b*  (s) must be a function, bounded and 
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periodic in {a, oo), with a period of the form ivq. Conversely, 
however, it is valid that, if zr (s) is a function hounded and 
periodic in {a, oo) with a period of the form ivq, we can use 
the function

P*  0) = P 0) + zr (s)

as a periodic splitting term; for, if we write in the form

/■(s) = (p(s) + 7r(s)) + (fe(s) —

the first term p(s) + zr(s) is periodic in {«, oo), while the other 
term Z?(s) — zr(s) is almost periodic and bounded in («, oc), as 
the difference of two functions, almost periodic and bounded 
in {a, co ).

Thus it is clear that the splitting is “essentially” unique.



CHAPTER III.

Functions almost periodic in a strip {a,ß), where ß<<x>.

Obviously it may be assumed, otherwise only applying the 
translation s = s' + ß, that ß — 0. In this chapter, the behaviour 
of a function, almost periodic in {«, 0) (—oo<«<0), in the 
immediate neighbourhood to the left of the imaginary axis o' = 0 
will be investigated.

Here, the situation is more complicated than in the case 
ß — oo, due to the fact that a function bounded and almost 
periodic in («, 0) does not show a similar simple behaviour 
for o'—* 0 as a function bounded and almost periodic in {a, oo) 
for o' —> oo.

The functions, bounded and almost periodic in {«,0), how
ever, shall be treated briefly, since we are especially interested 
in the unbounded functions. If /(s) is bounded and almost 
periodic in {«,0) it has—already because it is bounded—accord
ing to a theorem by Fatou, for o'-*  0 a limit function F(7) = 
/’(z7) in the sense that /’(o'+z7) for o'-*  0 approaches a limit 
F(/) for any t in —oo<f<oo except in a set F of measure 
zero1. Thus, if r = t(¿) is an arbitrary translation number of 
f(s) in {a, 0), i. e.

|/’(s + z7)— f(s) I < e in a < o<0,

1 In its usual formulation Fatou’s theorem deals with a function f(z) 
bounded and analytic in a circle |z| < 1, and it states that, for almost all 
points Zo on the boundary |z| = 1, f(z) approaches a limit f(zo), if z tends 
to zo along the radius vector. When transforming the circle | z | < 1 by a linear 
substitution into the half plane ff<0, we do not just arrive at the assertion 
mentioned in the text, as the radii vectori of the circle are not transformed 
into horizontal straight lines in the half plane, but into certain arcs of circles 
orthogonal to the boundary <r = 0. It is, however, obvious that a function 
f(s), bounded and analytic in ff<0, which approaches a limit g, if s approa-

D. Kgl. Danske Vidensk. Selskab, Mat.-fys. Medd. XX, 18. 2
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we have for all t, except in a set of measure zero E' = E' (r) 
(namely the sum of the set E and the set obtained from E 
by the translation —r), the inequality

|F(¿ + r)-F(O| < e.

From this it follows especially that the limit function F(f) = f (it) 
is a function almost periodic in Stepanoff’s sense, as for any 
of the mentioned translation numbers r(é) of /’($) in {a, 0) holds 
the inequality

+1
u. b. \|F(i+r) —F(/)| d/ < é.

--  00 < t < 00

However, we shall not study this limit function in detail, as 
such a study—analogous for instance to the study of a limit 
function of a function bounded and analytic in the unity circle 
I z I < 1—lies beyond the scope of this paper.

In order to obtain information on the different possibilities 
and to have some conveniently simple examples at our disposal 
—before turning towards our proper problem, viz. the investig
ation of the functions almost periodic and unbounded in {«, 0)— 
we shall, however, mention some typical examples of functions 
bounded and almost periodic in {«, 0).

Example 1. It may, of course, happen that a function, 
bounded and almost periodic in («,()), is almost periodic also 
in {a, 0}, although it cannot be continued analytically across 
the line o' = 0. This is the case, for instance, with the purely 

oo I /
periodic function 2en's his the unity circle is the natural 

boundary of the power series -2

Example 2. The function
es +1

y(s) = ee"_1,

ches a point so = zio of the boundary along such an arc of a circle, also con
verges to g, if s tends to s() along the tangent t = to, simply because the 
inequality |/’(s)| < K for <r < 0 involves that f'(s) = O í—J for <r—> 0, while the 

vertical segment between the tangent and the circle is O (<r2) for a —> 0.
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also hounded in the half plane O'CO and periodic with the 
period 2jti, is regular on the whole boundary o=0 except
the points 2/rzzn (m = 0, ± 1, • • •); that the function y (.$) is 
bounded for o<(), viz. | y (s) | < 1, follows from the fact that

I
I e I < 1 for o'<() and the exponent s — therefore has a nega- 

e ' 1 J j
live real part in o"<0 (as by the linear function zz = -------- the

IV — 1
unity circle | iv | < 1 is transferred to the half plane 91 (zz) < 0). 
If s ranges over the segment o — 0 (0<¿<2tt), the function e

e + 1
ranges over the unity circle and therefore —------ over the wholee — 1
imaginary axis; thus y (s) will circulate an infinite number of 
times on the unity circle for t->0 and /->2?r. We have called 
attention to this bounded function y(s), because, for any suf
ficiently small e, in any case for e<l, it has no other trans
lation numbers i = t (e) in {a, 0) (a an arbitrary negative 
number) than just the numbers (periods) 2nm. For, if t is an 
arbitrary number 4= 2nm, in the difference

(f) (s + iv) — cp (s)

the first term <j> (s + it) converges lo y (zt) for s->0, while the 
other term <¡p(s) can be made to converge to an arbitrarily assigned 
value of the unity circle by letting s approach 0 in a convenient 
way from inside the half plane o<0; this implies, however, that 
|gp(s + z'r) — (f) (s) I obtains values greater than ¿ in the half plane 
o<0 (by the way in every half circle | s | < ó, o <0).

Example 3. Already in the introductory Chapter we men
tioned two functions, almost periodic in {«, 0), viz.

A (*)  = 7^1 and A (0 = 777 ’

the sum of which is not almost periodic in {«, 0); however, 
these functions are not bounded. It is of interest that the men
tioned conditions can also occur for two functions (s) and

(s) bounded and almost periodic in {a, 0); hereby we have 
especially shown that there exist functions, for instance the sum 
A(s) + A(s)’ which are almost periodic in {a, 0] and bounded 

2
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in {«,0), but not almost periodic in {«, 0), in contrast to the 
case ß = oo. As an example we may use the two functions

AGO = <jp(s) and A(s) = y(|/2s),

where y (s) is the function of example 2. We realize that the 
sum /'(s) = A (s) + A (s)> considered for instance in {—1,0), has 
no translation number r 0 for any t<l. In fact, if t 4= 0 
is an arbitrarily given number, we can obviously choose a 
number /0 in such a way that one and only one of the four 
numbers ¿0, /() + r, |/2/o, |/2(/0 + ,r) is a multiple of 2 n (if t 
itself is a multiple of 2/r, we may, for instance, use i0 = tt|/2 ; 
otherwise, we may use either the number t0 = 2 tt or, if 
J/ 2 (2 n + t) just is a multiple of 2/r, the number f0 = 4tt). 
Therefore, if we make s approach the boundary point z70 from 
the half plane tr<0, three of the four functions A(s)> A(s + Ir)> 
fz(s), f2(sß-ir) will approach definite limits, while by making 
s tend to it0 in a suitable way from the half plane o,<0 we 
may arrive at any number on the unity circle as a limit of the 
fourth function; hence it is excluded (just as in example 2) that 
the modulus of the différence

f(s + zT) — /'(«) = A (s + ' 0 + A (s + ir) — A (-0 — A (s)

remains smaller than a number ¿<1 in lhe whole half plane o'<0.

Now we begin the investigation of the functions, almost peri
odic and unbounded in {«, 0). In order to demonstrate at 
once that the situation here is essentially different from that of 
the functions almost periodic and unbounded in {a, oo), it may 
be emphasized that the sum of a function b(s), bounded and 
almost periodic in {«,()), and a function p(s), unbounded and 
periodic in {«,()), is not necessarily almost periodic in {«, 0). 
To this purpose, we need only consider the sum

/(«) = p(s) + b (s),

where b (s) is the function ÿ(s), bounded and almost periodic 
—even purely periodic—in («,0), given in example 2, which has 
no other translation number foi' any t<l than the numbers



Nr. 18 21

2jrm, while />(.s) is the periodic function
1

1—el 2.S with the period

|/2 /ri and the poles p2rn;TZ. For, if t is a translation number of
/■(s) in («,()) (belonging to some e or other), we must have 
T — j/2/nzr and, therefore, jd(s + zt) = p(.s-); but none of these
numbers t, except the trivial i: = 0, is a translation number for 
b (s) belonging to any e<l.

It is one of our main problems to decide to what extent a 
converse theorem would hold, i. e. to what degree we also here 
have a general splitting theorem analogous to that valid for 
ß — oc. As we shall see at the end of the Chapter, this is not 
always the case, although the theorem holds in an important 
special case.

Let us begin with the remark that a function /’(s), un
bounded and almost periodic in ( «, 0), actually assumes values 
with arbitrarily large modulus already in a bounded part of 
the plane, precisely speaking, that there exists a length L such 
that the function is not bounded in any rectangle of the form 
a < o’< 0, t' < I < t' + L. This is obviously valid for an L chosen 
thus that, in every interval t'<t<t' + L, there exists at least 
one translation number t of the function /(s) in («,0) belonging 
for instance to s = 1 ; for, if /'(s) was bounded (say | f(s) | < 7<) 
in only one of these rectangles, it would be bounded (viz. 
1/0)1 </i + l) in the whole strip «<o,<0. Hence, denoting a 
boundary point s0 = if0 as an “infinity point’’ of f(s), if /(.s) 
is unbounded in every half circle o<0, | s— s0 | < ô, we conclude, 
that f(s) certainly has infinity points on the boundary a = 0 
(as /'(x) is bounded in every substrip a< o'< /<0), and that 
these infinity points form a relatively dense set. That the ex
istence of one infinity point s0 involves the existence of a rela
tively dense set of infinity points, follows also from the fact that, 
together with s0, in any case all points s0 + zt must be infinity 
points, where t runs through the (relatively dense) translation mo
dule F of the function. The set of these infinity points of /(s) on 
the boundary o' = 0 forms of course a closed set. This set can very 
well consist of all the points of the boundary; this is the case for 
the function /(s) — ^en’s, purely periodic in (—oo, 0), where 
it holds for any fixed t = 2nr (r rational) that |/’(c-l-z7) |-> oo 
for o'—> 0.

For the more detailed study of a function, unbounded and
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almost periodic in {a, 0), an investigation of the translation 
modale F is of special importance. In the case /? = oc con
sidered in the foregoing chapter, the translation module was 
always discrete, i. e. it consisted of the numbers of an arithmetic 
progression. This may of course also happen when is finite, 

for instance for the function /(s) = ^ens = -------- (purely peri-
o 1 — e

odie in (—oo, 0)) with the poles 2m?ri, where F just con
sists of the numbers 2 mm. However, it may here also occur, 
that F is everywhere dense on the line —oo<f<oo. This 
is, for instance, the case for the above mentioned function 

/(.s‘) = c ' (also purely periodic in (—oc, ())), since any ra- 
. 1 . 771tional multiple of 2n surely belongs to F, as for r = —2 tt in 

1 Qthe whole half plane cr<0 the inequality 1

n'. (s + ii) n '. s „e — e ST/ /*(s  + it)- /'(.s‘)| = 5? i
holds. In the case where the translation module F is everywhere 
dense, the infinity points must also be everywhere dense, as 
follows from a previous remark; therefore they must constitute 
the whole boundary (as the set is closed), and especially the 
boundary <> = 0 must always be an essentially singular line 
for the function.

The investigation of the functions, unbounded and almost 
periodic in (a, 0), naturally falls into two cases corresponding 
to a discrete translation module and to an everywhere dense 
translation module, respectively. Before starting this investigation, 
it will first be proved that the translation module cannot con
sist of all real numbers. We observe that this is not a special 
case of a general theorem concerning arbitrary unbounded 
analytic functions, but a typical theorem for unbounded almost 
periodic functions; thus, the trivial not almost periodic analytic 
function f(s) = s is unbounded in an arbitrary strip («, ft, 
while the difference ffs + ir)—f(s) is bounded (in fact constant 
— z'r) for every fixed r.

Theorem. The translation module of a function f(s), unbounded 
and almost periodic in {«,()), cannot consist of all real numbers.
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It has to be proved that a function f(s), almost periodic in 
{a, 0), which has every number r as translation number (for 
some or other ¿), must necessarily be bounded.

A decisive s-tep in the proof is the demonstration that the 
translation function

p(r) = u.b. |/(s +zt) —/’(s) |,
s in (a, 0)

here defined for all t, is a bounded function of r. To show this, 
it is obviously sufficient to prove that z?(z) is bounded in the 
interval ()<r<L, where L is chosen in such a way that any 
interval of the length L contains a number r', which is a trans
lation number of /(.s’) in {a, 0) corresponding to e = 1; for if 
p(r)<Zc in 0<t<L, due to the inequality + < v (rj + 
p(t2), the function v (r) is obviously < Æ + 1 for all t. That 
the translation function v (E) is bounded in a finite interval 
0 < r < L can be demonstrated in the following way: We con
sider v (r) in the interval —L<t<L and denote by E the 
(measurable) set in —L<r<L in whose points, p(r)<n. As 
Et E2 œ 7i3 c • • • and as any t in —L<t<L belongs to 
the set En for n sufficiently large, the measure m (En) of the 
set En will converge to the length 2 L of the whole interval, 
for n->- oo. Therefore, we may determine N such that

m (En) > | L.

Then, for any r in 0 < t < L the inequality

v (r) < 2 N

will be valid. This is evidently proved, if we have shown that 
any given t in 0<t<L can be written in the form i = — t2, 
where both and z2 belong to the set E^¡ (and lies in the 
interval 0<r<L). This is possible, as a consequence of the 
fact that the set EN and the set E’̂  = E'N (r) obtained from EN 
by translating it by t must have a common point between 0 and 
L (which point then is equal to as well as to t + t2, where rL 
and r2 both belong to EN), the set EN as well as the set E'N 
having an intersection with the interval 0<t<L the measure 
of which is greater than —.
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Now it is easy to finish the proof, viz. to show that /(s) 
must he hounded in {«,()). We have only to choose an arbi
trary number A which is incommensurable with all the Dirichlet 
exponents of /'(.s) different from zero (forming a countably in
finite set) and to consider the periodic component p (s) of f(s)

777
in {«,()) belonging to the period ip = “' i. As no Dirichlet ex

ponent of /’(.s') which is different from zero is a multiple of A, 
this periodic component is simply a constant c, viz. the con
stant term in the Dirichlet development of f(s). On the other 
hand, however, p (s) can be determined (in the whole strip 
« < tf< 0) by

p(s) = lim + iP') + f(s + 2iP> +------ H f(s + .
n oc n

hence, it results that the difference p (s)— f(s) must he bounded 
in the whole strip («,()), viz. that its modulus must be < G = 
u. b. p(r), as we have

p(s) —/(s) =
lim + + 2 + ' ' ' + (f(s + nip) — f (,s-))

zî —> sc n 

where the modulus of each of the differences f(s-'rivp) — f(s) is
< G in {a, 0). From p (s) = c and | p (s) — f(s) | < G in {a, 0), 
it finally results that

|/'0)| < |c| + G in {«,())

and so we have proved that f(s) is bounded.
In the following we shall first treat the case where the trans

lation module F is discrete, and then the case where 1' is every
where dense on the line —sc < t < sc.

The translation module is discrete.
In this case the situation proves to be highly analogous to 

that for ß = sc (where the translation module always is dis
crete), as the following splitting theorem is valid.
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Splitting theorem: A function f(s), unbounded and almost 
periodic in {«,0), with a discrete translation module can always— 
and practically in one way only—be written as a sum

/’GO = p (s) + b CO,
where p (s) a function, unbounded and purely periodic in {«, 0), 
while b (s) is a function, bounded and almost periodic in

Lei us denote the numbers in the translation module F which, 
in consequence of the assumption, form an arithmetic progres
sion, by t = rg(g>0, v = 0, ± 1. • • 0- It is obvious that, in any 
splitting of f(s) of the kind mentioned in the theorem, each 
period of the periodic term must necessarily have the form ivq. 
Il will be proved that, as a period ip of the periodic term, we 
may even use the number zg, where g is the smallest positive 
number which might be taken into consideration, for we shall 
prove (in analogy to the case ß — oo) that the periodic component 
of /(.s) in {«, 0) belonging to the period zg is a possible p (s'). 
When proving this, it would not be convenient (as in the case 
ß = oo) to use the Dirichlet developments, because here (in con
trast to the case ß — oo) we have no simple criterion, whether 
a Dirichlet development just represents a function bounded in 
{«,0). We have to operate with p(s), determined in (a, 0) as a 
mean value, i. e. by the limit equation

/x /,Gs + zg) + /'Gs + 2z'g)+ • • • +/*(s  + n p(s) = li m ------------------ ---------------- ------------ .œ U

We have to show that the function b (,$)—obtained by subtract
ing from f(s) this function p (s') of the period zg, purely peri
odic in {a, 0)—is not only (of course) almost periodic in 
but actually almost periodic in («, 0) and moreover is bounded 
in { a, 0).

However, it is plain that the difference b (s) — f(s)—p (s) is 
almost periodic in the whole strip {«, 0). For, as any trans
lation number z of f(s) in {a, 0) lies in the translation module 
F, i. e. has the form vq, the number ir is a period of p (s), 
and therefore any translation number t (?) of f(s) in («, 0) is 
also a translation number t (F) of b(s) in (a, 0).
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In order to prove that the function ¿>(0-/(0—p (s) is 
hounded in («,0) we show’ primarily that the translation 
function v (r) of /(s) in {«, 0), w hich here is defined for 
T = vq (v = 0, ± 1, • ■ • ) only, is hounded, i. e. that

p(t) < K for all t = vq (v = 0, ± 1 , • • • ).

To this purpose we consider the set of translation numbers r of 
f(s) belonging, for instance, to í = 1. As each of these numbers 
is a multiple of q, the relative density of the set formed by 
these numbers r(l) implies that there exists a positive integer 
M such that among M arbitrary consecutive multiples of q there 
exists at least one which is a r(l). If now k denotes the great
est of the M numbers v(vq) (v = 1, 2, • • • J/), for all r = vq 
the inequality v (t) < k + 1 obviously holds. Having thus proved 
the inequality v(v) < /< for all t — vq, it is plain that the 
function b (s) is bounded in the w’hole strip {a, 0), since for 
any point s in {«, 0) the limit equation

/’CO = /(o—pco =
lim ~ + + ~ A5 + - ’</)) + ’ ' ' +0 C0 ~~ /Cç + *’»</))

n-x oo ”

is valid, where the modulus of each occurring difference

f(s) — f(s + ivq)

is < /<; hence also | b (s) | < K.
Subsequently, it is easy to decide to what degree the men

tioned splitting is unique and, as we shall see, the result is quite 
analogous to that found for /? = oc. Let

/CO = P (s) + b (s)

be the “standard splitting” given in the proof above, in which 
p (s) is the periodic component of f(s) belonging to the period 
iq, where q is the smallest positive number in the translation 
module F, and let

f(s) = p*  (s) + b*  CO
be an arbitrary splitting of f(s) in («,()) of the kind mentioned 
in the theorem. As the periodic term p*  CO certainly has a 
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number of the form imq as a period (m a positive integer), the 
difference n (.s) — p*(s)  —p(s) = b (s) — b*  (s) must necessarily 
be a function, bounded and periodic in {a, 0) with a period 
of the form imq. Conversely, however, it also holds that for 
any function 7r(.s), bounded and periodic in {«, 0), with a 
period of the form imq, we may use as a periodic splitting 
term the function

7>*  (») = P («) + yr (s)

periodic in («,()), i. e. the function

b*  (s) = b(s)—7t(s)

is not only (of course) bounded in u 0) and almost periodic 
in (a, 0], but also almost periodic in the whole strip {«,()). 
Evidently, this is proved, when we have shown that for any 
é >■ 0 the function b (s) has in 0) a relatively dense set of 
translation numbers (not only, as we already know, of the 
form vq, but also) of the form vmq. To see this, we only 
need to apply that b (s) has a relatively dense set of translation 

£
numbers of the form vq belonging to —, and that these latter 

m
translation numbers multiplied by m are translation numbers 
of b (s) belonging to e itself.

The translation module F is everywhere dense.
We have already mentioned that there exist functions, f(s), 

unbounded and almost periodic in {a, 0), whose translation mo
dule is everywhere dense on the line —oc<i<oc; the periodic 

oo ,
function f(s) = en‘s considered in {—1, 0), for instance, is of 

i
this type. Furthermore, we have seen that any function f(s) of 
this type has the boundary o' = 0 as an essentially singular 
line, and even that every point on the boundary is an infinity 
point. Our main result concerning these functions is comprised 
in the following (negative) theorem:
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Theorem. There exist functions f(s), almost periodic and un
bounded in a strip («,()), which cannot he splitted into a sum

f(s) = p (s) + b (s),

where p(s) is purely periodic in {«,()), while b(s) is bounded and 
almost periodic in (a, 0).

Moreover, we shall prove the somewhat further going theorem 
that such a splitting is not always possible, even if we only 
demand that the function Z> (s) (which on account of the equality 
b(s) — f(s)—p (s') automatically is almost periodic in {«, 0]) 
be bounded in (ce, 0), but not that it be almost periodic in the 
whole strip (ce, 0).

In order to construct a “counter-example” which is suited 
to prove the correctness of the assertion made in the theorem, 
we shall first look for a general type of examples concerning 
functions unbounded and almost periodic in a strip {«, 0) 
and having an everywhere dense translation module. Starting 

from the simple example f(s) — Ve115 (periodic and therefore 
i

quite unadapted to our proper purpose), it is obvious to think 
of almost periodic functions with Dirichlet exponents which 
form a sequence strongly increasing to the infinity, i. e. ordinary 
Dirichlet series

/*(«)  = £ ane'nS (0 < < • • • -> Oo)
1

with so-called “gaps”, i. e. with very large intervals between the 
exponents. Actually, the general theorem holds that every such 
series represents a function f(s), unbounded and almost periodic 
in (—Oo, 0) (and not only in (—oo, 0]), with an everywhere 
dense translation module, if the series has the half plane o'<0 
as convergence half plane and is divergent on the boundary line 
o' — 0. We shall postpone the formulation of this “gap theorem” 
and its proof to the next Chapter. Here, we shall confine our
selves—as this is sufficient for our present purpose—to mentioning 
that it results from this gap theorem (hat every Dirichlet series 
X e'li> with coefficients an = 1 for which

0 < < Â3 <•••-> oo and X + i > 
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represents a function f(s), unbounded and almost periodic in 
(—oo, 0), and, therefore, also for instance in {—1, 0), with an 
everywhere dense translation module.

Within this class of functions f(s) we shall attempt to 
determine one which may be called highly “aperiodic” in the 
sense that by splitting oil’ a function p (s) purely periodic in 
{—1,0) we can never obtain a function b (s) bounded in{—1, 0).

As we shall see, we have a function of this type in every 
function /’(.$) of our class with rationally independent exponents 
Zn. The task is to show that such a function f(s) cannot be 
written in the form

/(•s) = p («) + &(s),

where p (s) is purely periodic in {—1,0) and b (s) bounded in 
(—1,0) (and of course almost periodic in {—-1,0]). We give 
an indirect proof and, consequently, suppose that such a repre
sentation exists. As the Dirichlet exponents of the function f(s) 
are rationally independent, at the most one of them can have 

2 7Tthe form — vt where ip is a period of p(s). In the following 
we may assume that f(s) has no Dirichlet exponents of this form, 

2 TVas, if A — was such a Dirichlet exponent, we should only 

subtract c/ls on both sides of the equation, exactly speaking 
we should replace f(s) by f(s) — eAs, and b(s) by b(s)— eAs, 
whereby f(s) — eAs as f(s) is unbounded in {—1, 0), and b(s) — eAs 
as b (s) is bounded in {—1,0). We now write the equation 
f(s) = p(s) + b(s) in the form

b(s) = —p(s) + f(s)

and we consider this equation in the strip {—1,—f) where 
0<f<l. The periodic term —p(s) is obviously just the peri
odic component of b (s) in {—1,—e) belonging to the period

2 n
ip, because f(s) has no Dirichlet exponents of the form ----v.
Hence, we have the inequality

u. b. I p (s) I < u. b. I b (s) 
s in 1,—f) s in (—1,—é) 
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Consequently, if B denotes upper bound of | b (s) | in the whole 
strip {—1, 0), the absolute value of p (s) is < B in the whole 
strip {—1,0). However, this contradicts the fact that /‘(.s') is 
unbounded in {—1, 0), as it would involve that in the whole 
strip {—1,0) the inequality

|/(s) I < |/>(s)KI'’(s)l < 2B

was valid. Hereby, the proof of our theorem is fulfilled.



CHAPTER IV.

A gap theorem concerning the almost periodicity 
of Dirichlet series.

In this Chapter, we shall only deal with Dirichlet series in 
the classical sense, i. e. with series

PC 
anefnS, where 0 < Zt < Z2 < • • • -> oc .

i

We shall even consider such series only, whose exponents in
crease strongly to the infinite, from which it follows in parti
cular that the series is absolutely convergent in the whole con
vergence half plane of the series, which may be supposed to be 
the half plane tf<0. Then, for c<0, the series represents an 
analytic function f(s) which is almost periodic in (—co, 0] and 
has the given series as its Dirichlet development.

The so-called Hadamard’s gap theorem for Dirichlet series 
states, generally speaking, that the convergence line <r = 0 always 
is an essentially singular line of the function /"(s) represented 
by the series, if the sequence of the exponents increases rapidly 
enough. In order to illustrate the kind of reflections made be
low by an especially simple case, we shall begin this Chapter 
by proving Hadamard’s gap theorem in a rather extreme case, 
viz. the case where the exponents increase so strongly that the 
ratio of an exponent and the foregoing one is greater than a 
constant >3. As we shall see, the theorem can then be proved 
in a particularly simple way.

A special case of Hadamard’s gap theorem. A function f(s) 
represented by a Dirichlet series J; uriez'nS with the convergence half 
plane a<0 whose exponents satisfy the inequality
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2 , 1
— > k > 3 (for n > n0) 
n

has the convergence line <7=0 as an essentially singular line. If 
X" I an I is divergent, all the points of the line <7 = 0 are infinity 

points of f(s).

The proof is based on the following well-known (and easily 
provable) theorem of Vivanti and Landau: If for a Dirichlet 
series f(s) = ¿,«neÁ"s with the convergence half plane o'= 0 it 
is valid that in a point s0 = if of the boundary all the terms 
aneÍÁn 0 are positive from a certain step, the point .s0 is always 
a singular point of the function /(s)—whether the series is con
vergent or divergent in the point. We shall use this theorem in 
the well-known, somewhat more comprehensive formulation 
where the assumption that all the terms nnelZ" 0 are positive 
from a certain step is replaced by the weaker assumption that 
all the terms aneUnt° from a certain step lie in a fixed angle <n, 
for instance in an angle —+ d < v <~—d ^where 0 < d < 

Moreover, we shall use the following simple remark: if on the 
line — oo < t < sc there lie intervals of a fixed length ß < a, 
periodically with a period «>(), then every interval with a length 
> a + ß in its interior contains at least one of the mentioned 
intervals of the length ß.

In order to prove that all points of the line <7=0 are sin
gular points of the function /(s) it is, of course, sufficient to 
prove that the singular points lie everywhere dense on the line, 
that is to say that there exists a singular point in every inter
val f<t<f on the line <> = 0. In consequence of the theorem 
mentioned above, this is certainly the case, if in the arbitrarily 
given interval f < t < t2 there exists a point f such that all 
the terms anelA,,t° from a certain step lie in the fixed angle 

TC TC
— --\-d<v< —d, where we assume d chosen so small (which 

is possible because of the inequality -7—1 > k > 3 for n>n0) 
that n

7T — 2d 3 7T — 2d
.— lor 7i>z?0.

'“n '“n + 1
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Concerning the n-th term anelÁn , the intervals I on the /-axis, 
in whose points the amplitude of the term lies in the angle 
— ? + d < ? — d, have the length 77 and they repeat

2 2 À

themselves periodically • i i . , 2 7Twith the period „ In consequence of

a remark above, every interval of a length greater than

therefore certainly contains one of the mentioned intervals I . 
By virtue of the inequality written above, for n > n0 each inter
val In contains an interval fn + 1- Now, we can ini mediately com
plete the proof. We have only to choose N>n0 so great that 
the given interval tl<t<t2 contains an interval /y. Inside this 
interval we have then to determine an interval /v + 1, inside that 
again an interval /v + 2 etc. If i0 denotes the common point of 
the sequence of intervals thus determined, all the terms ariel/'n 0

TT 7T
for n > are situated in the angle — —+ c/<p< — — d, and the 

point s0 = it0 is therefore a singular point of f(s).
In the case where | an | is divergent, it is moreover clear 

that the point s = it0 thus obtained is an infinity point of /($) (as the 
above consideration shows that | /(o' + it0) | -> oo for o'—>0); thus, 
if X11 an I is divergent, in every interval t1<t<t2 there exist in
finity points of f(s), i. e. the boundary consists of nothing but 
infinity points.

We shall now formulate and prove the main theorem of this 
chapter.

An almost periodic gap theorem. If >.1<Z2< • is a 
sequence of positive numbers, which (for the sake of simplicity) 
we shall suppose to be >1, and which are increasing so strongly 
to the infinite that , ,

Ân+i>e n for aI1 n’

where k is a positive constant, then every Dirichlet series

n= 1

D. Kgl. Danske Vidensk Selskab, Mat.-fys. Medd. XX, 18. 3
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belonging to this sequence of exponents and convergent for o<() 
—and therefore also absolutely convergent for a< 0—represents a 
function f(s) analytic in a < 0 which is almost periodic in the 
whole half plane (—00, 0) and not only in (—oo, ()].

Moreover, the translation module F of f(s) in (— oo, 0) is every
where dense on the t-axis, i. e. in every interval Zt < /< /2 exists a 
number t such that the difference f(s-\-ir)— f(s) is bounded in 
the whole half plane o'<0.

K F KI is convergent, the theorem is trivial, and therefore 
we may suppose in the proof that y | «n | is divergent; as a 
consequence of a remark given above it is then valid—as the 
condition which is now imposed on the exponents ). is much 
stronger than the former one—that the boundary a = 0 consists 
of nothing but infinity points of the function f(s).

Proof: We choose a fixed positive c<k. As the series 
y ane~Á,,c is convergent, there exists a constant K such that

1 I e~z,!C < Æ for all /?; we may suppose K = 1 (otherwise we 
only divide all the coefficients an by K), i. e.

Kl <ßZnC f°r 11 •
Next, we choose a number c' such that

c< c < k
and write

en = e~ÁnC for all n.

Especially it is valid that the series y eXnC and thereby a 
fortiori the series y g„ | an | is convergent.

Let us consider the exponential factor eUnt. Periodically with 
2 n . . .

a period , on the Z-axis there he intervals In of the length
2 ¿n 'n

in whose points t the exponent lnt differs from an integral 
'’n 
multiple of 2 yr less than en; in these points it is furthermore 
valid that

l|<e„.

For large n, say for n>n0, every one of our intervals I con
tains one of our intervals /n + 1, as for large n the inequality
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is valid; this is evident, as the right side is 
large n (because c < k) we have

2^ne^c'.

From this, one of the assertions made in the theorem follows 
at once, viz. that in every given interval tt< t <t2 there exists 
a number r for which the difference /(s + it) — f(s) is bounded 
in the whole half plane O'CO. We have only to determine 
xV > n0 so large that the interval < t < t2 contains one of 
our intervals IN; then, we determine in it an interval /v + 1; 
in it again an interval /v+9 etc- The common point of the 
sequence of intervals IN, IN+1, /y+2» ’’’ then a point in
tl<t<t2 for which /(s + zt) — /(s) is bounded in o<0, as for 
every s in <j> 0 the inequality holds

However, we must proceed somewhat more cautiously when 
proving our main assertion, viz. that /’(.s) is almost periodic in 
(—oc, 0), i. e. that to any arbitrarily given which we may 
suppose to be < 1, there exists a length L = L (¿) such that, in 
every interval of the length L, there exists a number t for which

|/'(.s + z'r) — f(s) I < e in the whole half plane O'CO.

We determine a number N = N(e)>n0 such that

V1 i i f j-i 16 n . y c2l«nlfn<0 and ZN+1>—*
N + 1 ¿ «

We can fulfill the last condition, because c<k and Zn + 1>efcXn. 
Now we split the function f(s) in the half plane o'CO into a 
beginning BN (s) and a remainder fíN(s), namely

3*
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ßv(s) = SaneÁ',S and M'S') = £ (lneÁllS.
1 N + 1

Here, the function Bv(s) is of course almost periodic in (—oo, 0), 
namely even almost periodic in (—oo, oo], We determine a 
length L (> 1) such that every interval of the length L con
tains a translation number r of BN(s) in (—oo, 0) belonging to 
£
—. Then, this length will be a usable length /> (¿) of f(s) in 
(—oo,0). To prove this we primarily estimate the differential 
coefficient B'N(s) in ff<0 and find

|BN(S)I = < 2XI«„I <
n= 1 n = 1

If we set c

it holds for every t0 in the interval r~lN<t<r + lx around 
one of our translation numbers r = 'r(j) of BN(s) in (—oo, 0), 
that in (—oo, 0)

I Bn (s + ,?„) - Bn (s + il) I < lN NXneVc = 

consequently the interval i— lN<t<r-]-lN consists of nothing 
but translation numbers of BN(s) in (—oo, 0) belonging to 
£ , f £ _ . o / 1\4+— = In particular, we find las T>1 and lN<~] that 
every interval /</<;' + £ of the length L contains a whole 
interval of the length lN whose points all are translation 
numbers of BN(s) in (—00, 0) belonging to . However, we 
have 2

, e 4 7T=-------- -  >------  ,
41VÂ eX1VC Z

and our interval iN of the length lN contains therefore at least 
one of the intervals ÍV4-1 mentioned above. Now we proceed 
as before; we determine an interval IN + 2 inside IN + 1, in it 
again an interval IN + 3, and so on. The common point of the 
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sequence of intervals iN, IN+1, /N + 2, • • • is called t. This 
number r lies in'the interval x<i</ + T, and it is further a 
translation number of f(s) in (— oo, 0) belonging to e. In fact, 
the inequality |elZni—1 | < en is valid for t lying in an interval 
In; hence for #<0 we get

f(s + ir) - /-(s) I < I BN (s + ir) - (,) I + I B v (S + - ßN (s) I

Thus, the theorem is established.

Indleveret til Selskabet den 7. Juni 1943. 
Færdig fra Trykkeriet den 25. November 1943.




